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Abstract Bistable systemshave seen significant inter-
est in recent years, in applications ranging from energy
harvesting, impact mitigation, and aerospace, to preci-
sion sensing and metamaterials. However, most inves-
tigations of bistable systems consider only continuous
external forcing. The literature on the topic of vibroim-
pact dynamics is vast, but is mostly limited to monos-
table systems. In this work, we advance the state of
knowledge by considering the fundamental problem of
a one degree-of-freedom bistable system subjected to
vibroimpact forcing by a sinusoidally vibrating shaker.
Using computational models, we find that by varying
excitation amplitude and frequency, a rich nonlinear
dynamic behavior can be observed. Some responses
exhibit only intrawell dynamics, while others display
interwell motion that may converge to a second equi-
librium. Analytical equations are derived to estimate
the amplitude threshold that corresponds to the exci-
tation amplitude required to observe interwell motion.
The influence of the excitation frequency on the non-
linear dynamics of the system includes the presence of
a local minimum in the threshold which is linked to a
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nonlinear resonance of the system. Further, response
types can be differentiated by aperiodic (including
chaotic) and periodic responses that include responses
of periods one through six. In addition to computa-
tional simulations, the existence and stability of peri-
odic orbits are determined using a shooting method
based on the response over a single cycle. Experimental
work using a magnetic bistable pendulum qualitatively
validates the theoretical findings.
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1 Introduction

Systems including one or more bistable mechanical
systems, which exhibit two stable equilibria, have been
under extensive research in recent years, particularly
in the areas of metamaterials [1–3] and energy har-
vesting [4–6], or even mechanical computing [7]. Bilal
et al. [8] investigated bistable elements as a means
for switching between two states, while Xia et al. [9]
explored the influence of system parameters on escape
from energy wells using base excitation. The propaga-
tion of transition waves in 1D chains of bistable ele-
ments has been studied by Raney et al. [10]. Harmonic
displacement constraints have also been considered by
the likes of Arrieta et al. [11], who use a shaker to pre-
scribe the displacement of a portion of the structure.
Textbooks such as those by Virgin, Wang et al., and
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Datseris et al. explore fundamental bistable systems
with numerous applications but neglect the case of
impact forcing [12–14]. These studies allow for pre-
cise tuning of energy harvesters and metastructures
subject to base excitation, harmonic displacement, or
quasi-static actuation. However, the literature regard-
ing vibroimpact forcing on bistable systems, where
excitation is provided by collisionswith a harmonically
displaced barrier, is more limited. Considering this
type of excitation is essential for incorporating bistable
structures into mechanisms and assemblies, with appli-
cations spanning switching, sensing, and energy har-
vesting.

Impact-forced systems exhibit highly nonlinear and
nonsmooth dynamics and are frequently found in
machines and mechanisms. Previous studies have
extensively explored classical systems such as balls
bouncing on vibrating surfaces [15] or flexible beams
[16] and nonlinear systems under continuous exter-
nal forcing [17–19]. Additionally, displacement con-
straints have been studied in conjunction with base
excitation or continuous external forcing [20–22]. In
particular, Gu and Livermore showed a linear system
subjected to impact displays rich dynamics [22].While
many of these studies highlight nonlinearities present
from impacts or the underlying system, few consider
the fundamental issue of a bistable system driven solely
by collisions. A notable exception is the work of Xie et
al., who studied a piezoelectric bistable system with
a unilateral displacement constraint [23]. Xie et al.,
however, focused on the analysis of their system for
its application as an energy harvester rather than a
study of the fundamental nonlinear dynamics of the
system.

While prior investigations consider impact excita-
tion and bistable systems independently, few studies
have focused on the combined nonlinear dynamics.
The current work investigates a fundamental class of
systems represented by an inherently bistable single
degree of freedom (SDOF) system driven by colli-
sions with a sinusoidally vibrating shaker. Theoretical
and experimental results are presented to analyze the
fundamental nonlinear dynamics of the system. Such
a system displays complex frequency and amplitude-
dependent dynamics with intrawell and either transient
or continuous interwell oscillations. The present work
explores these complex dynamics with the goal of clas-
sifying the possible dynamic responses and identifying
which conditions are required to achieve them. After
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B

Fig. 1 a Lumped system with dimensional parameters. b
Bistable potential energy profile. �x is the distance between
energy minima, and �U is the energy barrier

deriving a numerical model, we focus on varying exci-
tation frequency and amplitude to explore the response
types and some associated bifurcations. Finally, we
show experimental results which indicate our model
is capable of predicting these physical phenomena.

2 Model for the impact-forced dynamics of a
bistable system

The single degree of freedom is represented as the
lumped parameter system as shown in Fig. 1. A mass
m̂ of displacement x̂ attached to a bistable spring of
nonlinear stiffness k̂(x̂) and viscous damping coeffi-
cient ĉ, where ˆ denotes dimensional quantities. The
system is initially at rest (x̂(0) = 0, ∂ x̂

∂ t̂
(0) = 0).When

this system is subjected to a time-dependent displace-
ment constraint ẑ(t̂) with initial contact, x̂(t̂) ≥ ẑ(t̂),
the system undergoes one or more collisions with
the shaker, which is prescribed velocity of the form
v̂(t̂) = V̂ cos(�̂t̂) for t̂ > 0, where V̂ is the shaker
velocity amplitude and �̂ is the frequency of oscilla-
tion.
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2.1 Governing equations

The bistable spring is assumed to have equal energy
minima (Fig. 1b), such that the potential energy can be
expressed as:

Û (x̂) = 1

2
k̂0 x̂

2
(
1 + x̂2

�x̂2
− 2

x̂

�x̂

)
(1)

Here, k̂0 refers to the spring’s linear stiffness and �x̂
is the distance between the two equilibrium positions.
Between collisions, the equation of motion of the sys-
tem is:

m̂
∂2 x̂

∂ t̂2
+ ĉ

∂ x̂

∂ t̂
+ ∂Û

∂ x̂
= 0 (2)

Collisions are handled instantaneously via the coef-
ficient of restitution, e,which relates themass’s velocity
immediately before and after a collision according to
the equation:

∂ x̂

∂ t̂

∣∣∣∣
t̂+n

= −e
∂ x̂

∂ t̂

∣∣∣∣
t̂−n

+ (1 + e)
∂ ẑ

∂ t̂

∣∣∣∣
t̂n

, (3)

where ẑ is the shaker displacement and t̂n is the time at
the nth impact. The governing equations can be written
in the following non-dimensional form:

∂2x

∂t
+ 2ζ

∂x

∂t
+ x − 3x2 + 2x3 = 0 if x(t) > z(t) (4)

∂x

∂t

∣∣∣∣
t+n

= −e
∂x−

∂t

∣∣∣∣
t−n

+ (1 + e)
∂z

∂t

∣∣∣∣
tn

if x(tn) = z(tn),

(5)

where the following non-dimensional quantities have
been introduced:

t = ω̂0

2π
t̂ x(t) = x̂(t̂)

�x̂
z(t) = ẑ(t̂)

�x̂
, (6)

where ω̂0 and ζ are the linear natural frequency and
damping ratio of the system, respectively:

ω̂0 =
√
k̂0
m̂

ζ = ĉ

2
√
m̂k̂0

. (7)

Fig. 2 An example waveform, with impacts occurring at
t0, t1, t2, . . .. The transient response overshoots the steady-state
amplitude before converging to a periodic solution

The following non-dimensional variables are used to
define the frequency and velocity amplitude of the
shaker:

� = �̂

ω̂0
V = V̂

ω̂0 × �x̂
. (8)

Numerical simulations are conducted using the Julia
programming language [24] and the Vern9 8th-/9th-
order Runge–Kutta algorithm from the DifferentialE-
quations.jl package [25]. Each impact is handled via
DifferentialEquations.jl’s ContinuousCallback func-
tionality. Each tolerance was decreased until the quali-
tative results described herewere converged.All results
except for Figs. 13 and 14 were obtained using ζ =
0.02 and e = 0.85. An example of simulated wave-
form is shown in Fig. 2.

2.2 Handling of sticking phenomenon

As � → 0 for e < 1, it is possible for the mass and
shaker to enter a series of close collisions termed “chat-
ter” [26]. In the limiting case � = 0, this becomes an
infinite series of of collisions as the mass and shaker
slowly converge to the same position. For simulation,
such chatter is truncated when two collisions occur
within t < 10−9, after which the mass and shaker are
assumed to remain in contact until the contact force
becomesnegative.This contact force corresponds to the
value of the left hand side of Eq. (4) when x(t) = z(t),
which results in the condition to maintain sticking,

∂2z

∂t
+ 2ζ

∂z

∂t
+ z − 3z2 + 2z3 ≥ 0. (9)
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Fig. 3 Illustration of the effect of frequency on the first few
response cycles. a, d, g Waveform immediately after t = 0.
b, e, h Change in energy for each impact given by Eq. (13). The
dashed line is the neutral line, which corresponds to no net energy
change after impact. c, f, i Mass kinetic, potential, and total
energy. Numbered square symbols indicate the first few impacts.

Parameters: a–c � = 1.75, V = 0.07, d–f � = 2.5, V = 0.07.
g–i � = 1.75, V = 0.10. By maintaining maximum shaker
velocity and varying frequency, the phase of impacts is varied.
For the same velocity (V = 0.07) in a–c and d–f, solutions will
be identical until the second impact, even though the frequencies
differ

3 Analysis of the nonlinear dynamics of the system

3.1 Effect of frequency and velocity of the shaker on
the initial response of the mass

Varying the non-dimensional frequency, �, or veloc-
ity amplitude, V , of the shaker excitation has very
distinct effects on the response of the bistable sys-
tem. Figure 3 illustrates the first few cycles of the
response predicted by our model in a baseline case
(� = 1.75, V = 0.07) and cases with either increased
frequency (� = 2.5, V = 0.07), or increased ampli-
tude (� = 1.75, V = 0.14). The effect of these stim-

ulus parameters on the response of the mass can be
understood by examining the effect of each impact on
the mass. A collision at time tn causes a discontinuity
in the kinetic energy according to:

�K (tn) = 1

2
mv(t+n )2 − 1

2
mv(t−n )2 (10)

where v denotes the non-dimensional velocity (v =
∂x
∂t ). v(t+n ) is related to v(t−n ) by Eq. (5). The mass is
at rest prior to the first collision at t = 0 such that:

�K0 = m
[
V (1 + e)

]2
2

(11)
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Because Eq. (11) does not depend on �, the responses
for t ≤ t1 are identical when � is increased while V is
kept constant (compare panel A to panel B of Fig. 3).
However, because the shaker has a higher frequency,
the second impact occurs at a different time. The timing
of a collision, t̂n , can be used to define the phase of the
impact according to:

φn = �t̂n mod 2π (12)

By this definition, the phase of the first impact is always
set to be 0. The phase of the 2nd impact is φ1 ≈ 0.05
cycles for � = 1.75 and φ1 ≈ 0.59 cycles for � =
2.5. This change in the impact phase has important
consequences on the effect of collisions on the energy
of the system. The change of the energy for the nth
collision can be expressed as a function of φn and of
the velocity prior to the impact, v(t−n ):

�K (tn) = �K0

[(
cosφn − e

1 + e

v(t−n )

V

)2

−
(

1

1 + e

v(t−n )

V

)2
]

(13)

A surface plot of the energy is plotted as function of
φn and v(t−n ) in the center column of Fig. 3, which
allows us to visualize the effect of these parameters on
the energy change due to each collision. �K (tn) can
be positive (implying that the collision adds energy) or
negative (implying that the collision removes energy)
according to Eq. (13). The condition for a collision to
add energy is

−1 + e

1 − e
cosφn ≤ v(t−n )

V
≤ cosφn . (14)

The first inequality yields the boundary shown in the
dashed line in Fig. 3. We also note collision is only
possible if v(t−n ) ≤ ż(tn), which yields the following
inequality:

v(t−n )

V
≤ cosφn (15)

such that the energy is only plotted below the thick
solid line in the figure. Impacts that occur on this line
are termed grazing impacts. The points corresponding
to the first few impacts are shown in the center column

of Fig. 3. In agreement with these panels, we observe
in the graph of the energy vs time that the 2nd collision
removes energy in Panel D, while it adds energy in
Panel A. Between each collision, potential and kinetic
energy is exchanged, and the total energy decays due
to viscous damping.

Increasing the velocity amplitude (3rd row of Fig. 3)
increases �K0 according to Eq. (11), such that the
response between 1st and 2nd impact reaches a higher
amplitude. This increase in the amplitude of the
response results in a softening effect due to the non-
linearity of the spring, affecting both the phase of the
2nd collision, and the velocity at the time of the 2nd
collision.

Changing the phase of the second collision and the
energy added by the first collision by varying stimulus
frequency or amplitude allows us to observe a very rich
nonlinear dynamical behavior, which is explored in the
next sections.

3.2 Transition to and out of chaos when � is varied

The steady-state response is investigated by simulating
20,000 linear natural periods of the system and catego-
rizing responses based on periodicity andwhich energy
well(s) themass orbits near or converges to at the end of
the simulations. We first study the influence of excita-
tion frequencyon the response for lowamplitude shaker
velocity.

3.2.1 Transition to chaos

For shaker excitations of low amplitude and frequency,
the response remains around the first equilibrium. This
intrawell response can be periodic with a period of
1, 2, . . . , 6+, or chaotic, as it passes through a series
of bifurcation points as frequency changes. For exam-
ple, Fig. 4 shows several stages in this transition: from
period-one response to period-two to period-four to
chaos as frequency increases.

In Fig. 4a–c, a period-one response is displayed,
where the mass waveform repeats for each period of
excitation. Figure 4a shows the steady-state waveform
with a period which matches the excitation period and
includes one impact per cycle. Figure 4b shows the state
space portrait for many cycles of this response with the
Poincaré section overlaid. The single path and point
on the Poincaré section indicate a period of one while
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Fig. 4 Transition to chaos as frequency increases for V = 0.07.
a, d, g, j Waveforms showing both transient and steady-state
responses. b, e, h, k Phase plane with overlaid Poincaré section
for steady-state response. The shaded region indicates the range

of shaker displacement. The discontinuities highlighted in red
in Panel e, h add energy while the blue discontinuities removes
energy. c, f, i, l Change in energy for each steady-state impact
given by Eq. (13). (Color figure online)
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the single velocity discontinuity is the single impact
per cycle. Figure 4c quantifies the energy added or lost
for each impact at steady state. The impact occurs near
the dotted line, which indicates it is adding very little
energy per impact to compensate for viscous damping.
For high values of e, this also corresponds to an impact
occurring near the maximum or minimum shaker dis-
placement. For a periodic solution to exist, the sum of
the impacts must compensate for any energy lost.

Figure 4d–f shows a response which occurs at a
slightly higher frequency. The waveform in Fig. 4d and
the twopoints on thePoincaré section inFig. 4e are con-
sistentwith a period-twoperiodic response.One impact
per period of excitation, or equivalently, two impacts
per cycle of the mass, corresponding to the discontinu-
ities in the waveform and phase portrait, are observed.
The impacts in Fig. 4f show that energy is added with
an impact just before peak shaker displacement and is
removed with an impact just after the peak. The sum
of these energy transfers still adds energy to the mass.
The phase of each impact has moved further from the
neutral line.

Figure 4g–i shows a period-four response, with four
impacts per cycle. Energy is alternately added and
removed from the mass with each impact, with two
impacts on each side of the neutral line.

The remaining panels in Fig. 4 show a chaotic
response. The waveform in Fig. 4j has no repetition,
and Fig. 4k shows approximately 100 cycles, each with
its own path on the state space map and point in the
Poincaré section. This chaos extends to the impact map
in Fig. 4l, which shows impacts adding and remov-
ing energy, with impacts occurring over large regions
of the map. The chaotic behavior of the response was
confirmed by examining the spectrum of the response,
which is broadband as seen in Fig. S2 in Supplemental
Information. The shifting impact conditions described
in Fig. 3 is one of the reasons for the transition to chaos.
In particular, grazing impacts are a source of chaos in
the system.Minor variations dictatewhether the impact
occurs or not, leading to large changes in the response.

3.2.2 Transition out of chaos

In another type of bifurcation, the system response
can change dramatically as it moves into the second
equilibrium. For example, Fig. 5 shows the effect of
an even higher frequency of excitation with the same
shaker velocity of V = 0.07. For this example, the

system moves from a period-six response to period-
three before reaching sufficient energy to move to the
second equilibrium. After a region of chaos spanning
� ≈ 2.3 − 2.5 described near the end of the preced-
ing section, the system returns to a periodic response.
In Fig. 5a, the system exhibits a period-six response,
which agrees with the Poincaré section in Fig. 5b. Fig-
ure 5c highlights that the mass’s impacts occur just
before the shaker displacement extrema, adding energy
near the maxima and removing energy near the min-
ima. As frequency is increased slightly, the system con-
verges to the period-three response in Fig. 5d.Although
the period is three, only two impacts occur per cycle,
as evidenced by the pair of discontinuities in Fig. 5e
and the points in Fig. 5f. Once the mass has sufficient
energy, the threshold is exceeded and the system shifts
into the second equilibrium. The last few cycles before
snapthrough are shown in Fig. 5g, while Fig. 5h, i
describes the chaotic response that is observed before
snapthrough.

3.2.3 Bifurcation diagrams

These bifurcations can be seen in greater detail in
Fig. 6. In Fig. 6a, the maximum displacement per
cycle of excitation is plotted against excitation fre-
quency. Between � = 2 and � ≈ 2.15, the maxi-
mum amplitude decreases monotonically as the sys-
tem limits the softening effect of the bistable spring in
order to maintain stability at higher frequencies. In the
same region, Fig. 6b shows a slowly increasing phase
toward φ = 0.25 cycles which corresponds to lower
energy added for each impact. After the first bifurca-
tion shown, two branches of both maximum displace-
ment and phase become visible, indicating a period-
doubling effect and one impact per period of excitation.
Near � = 2.25, a second bifurcation occurs, doubling
the period again, into a period-four response. As fre-
quency increases past � ≈ 2.3, chaos emerges in the
system. This period-doubling bifurcation into chaos is
also observed in quasi-linear impact systems and is typ-
ical of strange attractors [27].

A shooting method based on the computation of a
single cycle of the response was used as alternative
method to determine periodic solutions. This shoot-
ing method, which was adapted from [28,29] and is
described in Supplemental Information, can also be
used to establish the stability of periodic solutions by
examining the Floquet multipliers, i.e., the eigenvalues
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BA

ED

HG

Fig. 5 Same as Fig. 4 but for higher excitation frequencies.
Panels h & i include transient response. An intrawell to inter-
well bifurcation is observed with increasing frequency. As fre-

quency increases, the response period decreases, and once suffi-
cient energy is reached, themassmoves to the second equilibrium

of the monodromy matrix. The result of this analysis
corresponds to the lines in Fig. 6c. The stable solutions
are observed to overlap with the results from the direct
simulations. The period-two and period-four bifurca-
tions correspond to the loss of stability of the period-
one and period-two solutions, respectively.

The chaotic response observed in Fig. 6a–b con-
tinues until a frequency near 2.55. Here, Fig. 6a indi-
cates a period of six, while Fig. 6b indicates only four

impacts. This means that there are some periods of
excitation that do not have an impact in this period-
six response. A similar pattern exists at the highest fre-
quencies shown; the period-three response has only two
impacts per period. At the highest frequencies shown,
the mass moves to the second equilibrium, such that
xmax = 1.
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A

B

C

Fig. 6 Bifurcation diagram when � is used a control parameter
while V = 0.07. a Maximum displacement of the mass within
each cycle of the shaker displacement. b Phase of the impacts.
Vertical red lines indicate values shown in Fig. 5c. Phase of
impacts for � between 2.10 and 2.30. Continuous lines indicate
predicted periodic responses described in Supplemental Infor-
mation. Thick and thin lines correspond to stable and unstable
solutions, respectively. Blue, red and green lines correspond to
period-one, period-two and period-four solutions, respectively.
As frequency increases, a series of period-doubling bifurcations
occurs until a region of chaos is reached. At higher frequencies,
stability is regained and the mass eventually exceeds the energy
barrier andmoves to the second equilibrium. (Color figure online)

3.3 Transition from intrawell response to interwell
response as velocity amplitude varies

By modifying the other control parameter, the exci-
tation velocity, V , another set of bifurcations occurs
as the system shifts between interwell and intrawell
responses. At � = 0.85, these shifts are highlighted
in Fig. 7. In Figs. 7a–c, at V = 0.11, a period-
four intrawell response with five impacts per cycle
is observed while the mass moves within the first
energy well. As velocity increases to V = 0.12, the
mass is able to escape the first energy well. Here, the
escape occurs only during the transient response in
Fig. 7d and quickly converges back to the period-eight
intrawell response in Fig. 7e, forming a transient inter-
well response. This initial overshoot implies that this
transition to interwell responses is dependent on ini-
tial conditions. Figure 7f shows the variety of impacts
that the mass experiences as it converges to steady-
state.As velocity continues to increase, themass travels
continuously between energy wells, which is shown in
the continuous interwell responses of Figs. 7g–i with
a period-one response and a single impact per cycle.
Finally, at V = 0.15, the mass is able to escape the
first equilibrium and remain in the second equilibrium

after a single impact at t = 0, forming another type of
transient interwell response.

These transitions are detailed in Fig. 8. At low veloc-
ity, a periodic response is observed.As excitationveloc-
ity increases, chaos is observed, then transient interwell
responses before continuous interwell and finally back
to transient interwell.

3.4 Classification of system dynamics

In addition to the targeted results described above,
numerical simulations were run for a wide range of
stimulus frequencies and amplitudes. The results of
these simulations were used to classify the response
according to the map in Fig. 9.

The three broad classes illustrated by the map
include intrawell, transient interwell, and continuous
interwell responses. The intrawell response, where the
mass oscillates around its initial equilibrium configura-
tion, tends to occur at low shaker velocity amplitudes.
In these conditions, not enough energy is transferred to
the mass in order to climb over the energy barrier. The
mass then remains oscillating around the first equilib-
rium and never snaps through. At higher amplitude, the
mass oscillates around both equilibria either continu-
ously (continuous interwell response) or for finite dura-
tion before converging to the 2nd equilibrium (transient
interwell). The shade of each cell corresponds to the
response period. Since the energy added or removed
from the mass during each collision is dependent on
the relative phase of motion, the results shown here are
only valid for this set of initial conditions.

Analytical equations were derived to approximate
the boundary between the intrawell and transient inter-
well regions, which occurs between three analytical
curves of interest: the single-impact threshold, the
interwell threshold, and the quasi-static threshold. The
single-impact threshold is an approximate upper limit
for intrawell responses. Above this limit, the initial
impact at t = 0 is sufficient to cause interwell motion
because the kinetic energy given by Eq. (11) exceeds
the energy barrier of the bistable spring, Ucr (see
Fig. 1b). The single impact threshold in the shaker
velocity amplitude is a constant value given by:

Vsingle impact = 1

4(1 + e)
(16)
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Fig. 7 Same as Fig. 5 for � = 0.85 as velocity is increased. As velocity increases, a bifurcation from intrawell to interwell responses
occurs
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Nonlinear dynamics of a bistable system 3025

Fig. 8 Interwell bifurcation occurswith increasing velocitywith
� = 0.85. Vertical lines indicate values shown in Fig. 7. At
low velocities, the system is periodic. As velocity increases, the
response period increases toward chaos. Finally, the mass trav-
els to the second equilibrium in either transient or continuous
interwell responses

Examination of Fig. 9 confirms that all points above
the line given by Eq. (16) are not interwell oscillations
about Equilibrium 1 for the set of parameters. How-
ever, this equation neglects the effect of viscous damp-
ing, such that it is possible for intrawell responses to
be observed slightly above this threshold as seen, for
example, in Fig. 13 which is based on a lower coeffi-
cient of restitution (e = 0.7).

The interwell threshold is derived by considering a
best-case scenario for maximum energy transfer to the
mass and a series of approximations (see Supplemen-
tal Information). The following constant value for the
interwell threshold is obtained:

Vinter = 1

2

1 − e

1 + e
(17)

As this conservative threshold describes an infinite set
of collisions at ideal phase, all points below the line
given by Eq. (17) are expected to be solely intrawell
oscillations.

Finally, the quasi-static threshold curve is obtained
by considering the response at the lowest frequencies.
At the low frequency limit, the shaker must push the
mass to the threshold quasi-statically, such that the
amplitude of the shaker displacement must exceed the
location of the energy barrier, xcr = 0.5, to cause
snapthrough. This analysis yields the following equa-

Fig. 9 By varying shaker amplitude and frequency, a wide range
of responses are obtained. Red, blue, and green regions are stable
periodic orbits that snap through zero, once, or multiple times,
respectively. Lighter colors indicate a longer response period.
The lightest regions of each color are chaotic responses. The
darkest green and blue regions represent responses that converge
to the second equilibrium. P-1, P-2,…, P-6+ correspond to peri-
odic solutions of period 1, 2,…, 6+, respectively. The horizontal
and vertical arrows correspond to the bifurcation diagrams shown
in Figures 6 and 8, respectively. (Color figure online)

tion for the quasi-static velocity threshold:

Vquasi-static = 0.5 × ω, (18)

which corresponds to the oblique dashed line shown in
Fig. 9.

When no sticking occurs with low frequency excita-
tion, many impacts occur per cycle of shaker move-
ment. Since the higher number of impacts severely
limits the phase shift possible before a grazing impact
and thus source of chaos occurs, these responses may
never converge to a periodic solution. One such exam-
ple is shown in Fig. 10a, where the impact phase shifts
slightly and aperiodically each cycle. At very low fre-
quencies such as in Fig. 10b, the mass and shaker
undergo a chattering sequence after which the two bod-
ies remain in contact. As the shaker retracts, the mass
separates and free vibration resumes. Since the con-
ditions for separation are exactly the same for each
cycle, once two sticking events occur, the response is
guaranteed to be periodic with the same period as the
excitation.
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A

B

Fig. 10 Examples of waveforms observed at low frequencies. a
A low frequency response without sticking, V = 0.01, � = 0.4.
b A low frequency response without sticking, V = 0.01, � =
0.25

3.5 Analysis of the notch in the intrawell to interwell
threshold

The theoretical results of Fig. 9 exhibit a notch that
appears in the region of � ≈ 1.2 − 1.6, V ≈ 0.05 −
0.07.While not as pronounced, the notch near� = 1.4
is also visible in the theoretical results obtained with a
lower e value shown in Fig. 13. This notch is caused
by the combined effect of a nonlinear resonance of the
steady-state response of the bistable system and of an
overshoot in its transient response. At very low excita-
tion amplitude, amaximum in the steady-state response
is observed when � ≈ 2. In this condition, all impacts
occur at a phase of 0, as discussed in Supplemental
Information in the derivation of Eq. (17). As the shaker
velocity amplitude is increased, the curve of the maxi-
mum displacement of the mass (Fig. 11a) veers toward
the left due to the softening of the bistable spring [30],
such that two stable branches and one stable branch are
predicted for period-one solutions for � ≈ 1.4. The
stable branch of low energy corresponds to impacts at
a phase of approximately −0.25 cycles (i.e., minimum
shaker displacement) while the branch of high energy
corresponds to impacts at approximately 0.25 cycles
(maximum shaker displacement). Figure 11b, d illus-
trates the convergence of responses to the low energy
period-one orbit when� = 1.35 and to the high energy
period-one orbit when � = 1.45, respectively. Both
low-energy and high-energy stable period-one orbits
exist when � = 1.4 in Fig. 11d. However, the initial

Ω=1.45

Ω=1.4

Ω=1.35

A

B

C

D

E

Fig. 11 aMaximum displacement of the mass within each cycle
of the shaker displacement for calculated stable (thick lines)
and unstable (thin lines) period-one solutions. Simulated results
(dots) exactly match calculated values for V = 0.005 (black),
V = 0.03 (red), and V = 0.06 (blue), except when the simula-
tion results converge to a higher-period response or the second
equilibrium in the V = 0.06 case. Nonlinear softening is clearly
observed near � = 1.4. b–d Examples of waveforms predicted
around the peak of nonlinear resonance for V = 0.05. c Awave-
form that settles into a intrawell period-one response with exci-
tation at � = 1.35. d A response that converges to the second
energy well after growing for several cycles with � = 1.4. e
Initial overshoot settling to a higher-energy period-one response
with � = 1.45. (Color figure online)

transient response tends to overshoot the steady-state
solution in all cases for the initial conditions used in the
simulations. In the case of � = 1.4, this overshoot is
sufficient to overcome the energy barrier of the bistable
spring, such that a transient interwell response with
convergence to the second equilibrium is observed.
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4 Experimental observation of the nonlinear
dynamics of the system

4.1 Experimental methods

We use the pendulum setup depicted in Fig. 12a–c
to study the periodic and chaotic dynamics of a one-
dimensional bistable system in experiment. The pendu-
lum uses two ball bearings at its pivot point to ensure
low friction and stable motion in the plane of oscilla-
tion, a lightweight wooden rod to act as the pendulum
arm, and a 3D-printed housing that secures two verti-
cally stacked neodymium (NdFe35) magnets at its end.
Each of these magnets is 15.88 mm in diameter with
a 0.79 mm thickness and 6.53 N pull force. Two addi-
tional neodymiummagnets 15mmunder the pendulum
bob determine the stable points in the potential energy.
These magnets are spaced 28.19 mm apart with diam-
eters of 25.4 mm, thicknesses of 1.59 mm, and pull
forces of 30.19 N. The total length of the pendulum
is 670 mm to reduce the pendulum’s vertical displace-
ment and maintain a small angle approximation.

A 3-dimensional finite element model that repre-
sents the experimental setup was analyzed in Ansys
to validate its double-well potential energy. The nat-
ural frequency of the system around the equilibrium
position can be determined by the effective moment of
inertia around the pendulum pivot point and the equiv-
alent torsional stiffness of the system (derivative of the
torque due to both the gravitational andmagnetic forces
around the pivot point with respect to the angular dis-
placement, θ ). Specifically,AnsysMaxwellwas used to
analyze the magnetic interactions and obtain the torque
induced on the pendulum due to the magnetic forces
as a function of θ . With slightly modified coercivity
value of 950 kA/m (6% increase from the default value
for NdFe35 magnets), the natural frequency around the
equilibrium position of the model was tuned to match
themeasured natural frequency in the experiments. The
total potential energy of the system as the sum of the
gravitational energy and elastic potential energy due to
the magnetic interactions (integral of the torque due to
magnetic forces) is plotted in Fig. 12d and is found to
be nearly identical to the theoretical model of Eq. (1)
near the two equilibria.

We use a portable shaker to impact the pendulum
with varying displacement amplitudes and frequencies
to observe the nonlinear vibroimpact dynamics of the
bistable system in response to the shaker excitation.

A DB

C

Fig. 12 a Experimental schematic. b–c Photograph of exper-
imental apparatus. d Potential energy comparison between
bistable model and theoretical pendulum

A high-speed camera with a tracking algorithm and
two laser doppler vibrometers track the pendulum and
shaker displacement and velocity, respectively.

4.2 Experimental results

For these series of tests, a series of measurements were
obtained for a range of excitation velocities and fre-
quencies. Due to shaker input limitations, this range
appears as a wedge in Fig. 13. As in the theoretical
results, both displacement amplitude and frequency are
normalized by the separation distance of the equilib-
riumpoints (28.19mm) and the natural frequency of the
pendulum (3.08Hz), respectively. Experimental results
display a similar richness to the simulated results, with
intrawell, transient interwell, and continuous interwell
responses, as shown in Fig. 13. For direct comparison
of theoretical results to experiments, the coefficient of
restitution, e, was estimated to be 0.7 based on experi-
mental observations of the velocity of the mass directly

Fig. 13 Experimental (shaded triangles) and theoretical (col-
ormap) results for the influence of shaker amplitude and fre-
quency on the nonlinear dynamics of the system. e = 0.7 to
match experimentally determined value. (Color figure online)
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A B

DC

FE

HG

Fig. 14 Representative waveforms showing qualitative similar-
ities between simulation and experiment. tss represents sufficient
delay to reach a steady-state response. a Period- one intrawell,
� = 0.649, V = 0.025. b Period-one intrawell, � = 0.65,
V = 0.03. c Period-four intrawell, � = 3.247, V = 0.03. d

Period-four intrawell, � = 3, V = 0.05. e Chaotic intrawell,
� = 1.948, V = 0.059. f Chaotic intrawell, � = 2.95,
V = 0.03. g Transient interwell, � = 2.922, V = 0.09. h
Transient interwell, � = 2.25, V = 0.1

before and after collisions. Using this lower e value, the
single-impact and interwell thresholds both increase.
The interwell threshold increases faster than the single-
impact threshold, so the transition region becomes nar-
rower. Good qualitative agreement between model and
experiments is observed in Fig. 13. A potential source
of discrepancy between the model and experiments
includes small unwanted motion outside the pendu-
lum’s plane of oscillation which originates from play
present in the bearings and becomes more apparent for
tests with high displacement amplitudes and high exci-
tation frequencies. Nevertheless, by comparing numer-
ical and experimental results in Fig. 14, we observe
striking similarity in the waveforms observed in the
period-one intrawell (Fig. 14a–b), period-four intrawell
(Fig. 14c–d), chaotic (Fig. 14e–f), and transient inter-

well (Fig. 14g–h) responses. Recordings of these exper-
iments can be found in Online Resources Movie_S1,
Movie_S2, Movie_S3, and Movie_S4 in the Supple-
mental Information.

5 Conclusions

In this work, the fundamental problem of a bistable
system excited by impacts with a sinusoidally vibrat-
ing shaker has been explored and found to have com-
plex responses that are dependent on excitation param-
eters. Derivation of a dynamical model based on the
coefficient of restitution allows for accurate simula-
tion of these nonlinear dynamics.Using these computa-
tional models, we find that by varying excitation ampli-
tude and frequency, several rich and distinct response
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regions can be obtained. These responses range from
periodic to chaotic. Under low amplitude and low
frequency excitation, the mass does not transition to
interwell motion and remains around the first equilib-
rium. At higher frequency and/or amplitude, the mass
may transition between energy wells once or repeat-
edly, depending on excitation parameters. The largest
regions of stable periodic orbits are either high energy
interwell responses or period-one intrawell responses.

Experimental results validate the presence of these
rich dynamics and confirm the physical presence of
intrawell periodic, intrawell chaotic, and transient inter-
well dynamics in a pendulum model.

Funding This study was supported by NSF Grant CMMI
2037565, theGeorgia Institute of TechnologyQuantumAlliance,
and the Woodruff Launch Seed Grant at Georgia Tech.

Data availability The data and source codes used in this work
can be made available upon request to the corresponding author
Julien Meaud (julien.meaud@me.gatech.edu).

Declarations

Conflict of interest The authors declare that they have no con-
flict of interest.

References

1. Shan, S., Kang, S.H., Raney, J.R., Wang, P., Fang, L., Can-
dido, F., Lewis, J.A., Bertoldi, K.: Multistable architected
materials for trapping elastic strain energy. Adv. Mater.
27(29), 4296–4301 (2015)

2. Meaud, J.:Multistable two-dimensional spring-mass lattices
with tunable bandgaps andwavedirectionality. J. SoundVib.
434, 44–62 (2018)

3. Ramakrishnan, V., Frazier, M.: Multistable metamaterial on
elastic foundation enables tunable morphology for elastic
wave control. J. Appl. Phys. 127(22), 225104 (2020)

4. Mann, B., Sims, N.: Energy harvesting from the nonlinear
oscillations of magnetic levitation. J. Sound Vib. 319(1),
515–530 (2009). https://doi.org/10.1016/j.jsv.2008.06.011

5. Harne, R.L., Wang, K.: A review of the recent research
on vibration energy harvesting via bistable systems. Smart
Mater. Struct. 22(2), 023001 (2013)

6. Pellegrini, S.P., Tolou, N., Schenk,M., Herder, J.L.: Bistable
vibration energy harvesters: a review. J. Intell. Mater. Syst.
Struct. 24(11), 1303–1312 (2013)

7. Yasuda, H., Buskohl, P.R., Gillman, A., Murphey, T.D.,
Stepney, S., Vaia, R.A., Raney, J.R.: Mechanical comput-
ing. Nature 598(7879), 39–48 (2021)

8. Bilal, O.R., Foehr, A., Daraio, C.: Bistable metamaterial for
switching and cascading elastic vibrations. Proc. Natl. Acad.
Sci. 114(18), 4603–4606 (2017)

9. Xia, Y., Ruzzene, M., Erturk, A.: Dramatic bandwidth
enhancement in nonlinearmetastructures via bistable attach-
ments. Appl. Phys. Lett. 114(9), 093501 (2019)

10. Raney, J.R., Nadkarni, N., Daraio, C., Kochmann, D.M.,
Lewis, J.A., Bertoldi, K.: Stable propagation of mechanical
signals in soft media using stored elastic energy. Proc. Natl.
Acad. Sci. 113(35), 9722–9727 (2016)

11. Arrieta, A., Hagedorn, P., Erturk, A., Inman, D.: A piezo-
electric bistable plate for nonlinear broadband energy har-
vesting. Appl. Phys. Lett. 97(10), 104102 (2010)

12. Virgin, L.N.: Vibration of Axially-Loaded Structures. Cam-
bridge University Press, Cambridge (2007)

13. Wang, K.-W., Harne, R.L.: Harnessing Bistable Structural
Dynamics: For Vibration Control, Energy Harvesting and
Sensing. John Wiley & Sons, London (2017)

14. Datseris, G., Parlitz, U.: Nonlinear Dynamics: A Concise
Introduction Interlaced with Code. Springer Nature, Berlin
(2022)

15. Luo,A.C.,Han, R.P.: The dynamics of a bouncing ballwith a
sinusoidally vibrating table revisited. Nonlinear Dyn. 10(1),
1–18 (1996)

16. Umeda, M., Nakamura, K., Ueha, S.: Analysis of the trans-
formation of mechanical impact energy to electric energy
using piezoelectric vibrator. Jpn. J. Appl. Phys. 35(5S), 3267
(1996)

17. Babitsky, V.I.: Theory of Vibro-Impact Systems and Appli-
cations. Springer, Berlin (2013)

18. Luo, A.C., Guo, Y.: Vibro-Impact Dynamics. John Wiley &
Sons, London (2012)

19. Ibrahim, R.A.: Vibro-Impact Dynamics: Modeling, Map-
ping and Applications, vol. 43. Springer, Berlin (2009)

20. Shaw, S., Holmes, P.: A periodically forced impact oscillator
with large dissipation (1983)

21. Zhou, S., Cao, J., Inman, D.J., Liu, S., Wang, W., Lin, J.:
Impact-induced high-energy orbits of nonlinear energy har-
vesters. Appl. Phys. Lett. 106(9), 093901 (2015)

22. Gu, L., Livermore, C.: Impact-driven, frequency up-
converting coupled vibration energy harvesting device for
low frequency operation. SmartMater. Struct. 20(4), 045004
(2011)

23. Xie, Z., Kwuimy, C.K.,Wang, T., Ding, X., Huang,W.: The-
oretical analysis of an impact-bistable piezoelectric energy
harvester. Eur. Phys. J. Plus 134(5), 1–10 (2019)

24. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia:
a fresh approach to numerical computing. SIAMRev. 59(1),
65–98 (2017)

25. Rackauckas, C., Nie, Q.: Differentialequations.jl—a per-
formant and feature-rich ecosystem for solving differential
equations in Julia. J. Open Res. Softw. 5(1) (2017)

26. Budd, C., Dux, F.: Chattering and related behaviour in
impact oscillators. Philos. Trans. R. Soc. Lond. Ser. A. Phys.
Eng. Sci. 347(1683), 365–389 (1994)

27. Thompson, J., Ghaffari, R.: Chaos after period-doubling
bifurcations in the resonance of an impact oscillator.
Phys. Lett. A 91(1), 5–8 (1982). https://doi.org/10.1016/
0375-9601(82)90248-1

28. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golin-
val, J.-C.: Nonlinear normal modes, part ii: toward a prac-
tical computation using numerical continuation techniques.
Mech. Syst. Signal Process. 23(1), 195–216 (2009)

123

https://doi.org/10.1016/j.jsv.2008.06.011
https://doi.org/10.1016/0375-9601(82)90248-1
https://doi.org/10.1016/0375-9601(82)90248-1


3030 M. Rouleau et al.

29. Sracic, M.W., Allen, M.S.: Numerical continuation of peri-
odic orbits for harmonically forced nonlinear systems, In:
Civil Engineering Topics, vol. 4, pp. 51–69. Springer, Berlin
(2011)

30. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear
Dynamics: Analytical, Computational, and Experimental
Methods. John Wiley & Sons, London (2008)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

Springer Nature or its licensor holds exclusive rights to this arti-
cle under a publishing agreement with the author(s) or other
rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	Nonlinear dynamics of a bistable system impacting  a sinusoidally vibrating shaker
	Abstract
	1 Introduction
	2 Model for the impact-forced dynamics of a bistable system
	2.1 Governing equations
	2.2 Handling of sticking phenomenon

	3 Analysis of the nonlinear dynamics of the system
	3.1 Effect of frequency and velocity of the shaker on the initial response of the mass
	3.2 Transition to and out of chaos when Ω is varied
	3.2.1 Transition to chaos
	3.2.2 Transition out of chaos
	3.2.3 Bifurcation diagrams

	3.3 Transition from intrawell response to interwell response as velocity amplitude varies
	3.4 Classification of system dynamics
	3.5 Analysis of the notch in the intrawell to interwell threshold

	4 Experimental observation of the nonlinear dynamics of the system
	4.1 Experimental methods
	4.2 Experimental results

	5 Conclusions
	References




